

系统的频率特性分析

频率特性的图示方法(1)

主讲 : 牛江川

4.2频率特性的图示方法

如前所述,频率特性的数学描述方法较多,既可以用指数表达式或幅角表达式去描述,还可以用实数部分和虚数部分所组合而成的复数表达式来描述。

将频率特性绘制成一些曲线,再从这些曲线出发进行研究,

即控制工程中的图解分析法。

工程中常用的频率特性图示法有三种,如下表4.1所示,

本节主要介绍前面的两种。

表4.1 常用频率特性曲线及其坐标

序号	名称	图形常用法	坐标系
1	幅相频率特性曲线	极坐标图	极坐标
		/Nyquist图	
2	对数幅频特性、	对数坐标图/Bode	半对数坐标
	对数相频特性曲线	图	
3	对数幅相频率特性曲	对数幅相图/尼柯	对数幅相坐标
	线	尔斯图	

4.2频率特性的图示方法

1、频率特性的极坐标图

频率特性的极坐标图又称为Nyquist图,也称幅相频率特性曲线。

因 $G(j\omega)$ 是 ω 的复变函数,故可在复平面内用复矢量表示。用幅值 $G(j\omega)$ 表示矢量的长度,与实轴的夹角为其相位 $\phi(\omega)$,在实轴和虚轴上的 投影分别为其实部和虚部。相位 $\phi(\omega)$ 的符号规定从正实轴开始, 逆时针方向旋转为正,顺时针方向旋转为负。

当 ω 从0→ ∞ 时, $G(j\omega)$ 端点的轨迹即频率特性的极坐标图。

如下图**4.2.1**,频率特性的极坐标图不仅表示了幅频特性和相频特性, 也表示了实频特性和虚频特性,要注意图中带ω箭头所指的方向 为ω从小到大的方向。

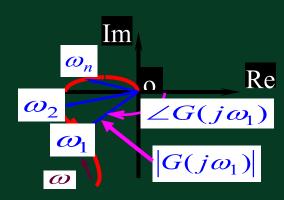


图4.2.1 频率特性极坐标图

(1)典型环节的Nyquist图

多加索莊戲道大學

在线开放课程

①比例环节

比例环节传函为:

$$G(s) = k$$

其频率特性:

$$G(j\omega) = k$$

显然,比例环节的实频特性为恒为k,虚频特性为0,幅频特性 $\frac{|G(j\omega)|=K}{|G(j\omega)|}$,相频特性 $\frac{|\varphi(\omega)|=0^0}{|\varphi(\omega)|}$ 。其Nyquist图为实轴上的一个定点,坐标为 $\frac{(K,j0)}{|\varphi(\omega)|}$ 如图4.2.2所示。

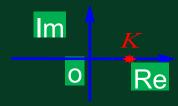


图4.2.2 比例环节Nyquist图

②积分环节

$$G(s) = \frac{1}{s}$$

$$G(s) = \frac{1}{s}$$
, 频率特性: $G(j\omega) = \frac{1}{j\omega} = -\frac{1}{\omega}j$

在线开放课程

虚频特性为 _ 1 显然积分环节的实频特性恒为0,

$$-\frac{1}{\omega}$$

故幅频特性为
$$|G(j\omega)| = \frac{1}{\omega}$$

ω从
$$0$$
→ $∝$ 时, $G(jω)$

,相频特性为
$$\varphi(\omega) = -90^{\circ}$$

幅值从 $\propto \rightarrow 0$,相位保持不变。

如图4.2.3所示,积分环节的Nyquist图为虚轴的下半轴,

从无穷远指向原点(具有恒定的相位滞后)。

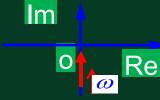


图4.2.3 积分环节Nyquist图

③微分环节

在线开放课程

传函:

$$G(s) = s$$
, 频率特性:

$$G(j\omega) = j\omega$$
 \circ

显然积分环节的实频特性恒为0,虚频特性为 ω

故幅频特性为 $|G(j\omega)| = \omega$

$$\omega$$
从 $0 \rightarrow \infty$ 时, $G(j\omega)$

,相频特性为 $\varphi(\omega) = 90^{\circ}$

幅值从0→∝,相位保持不变。

如图4.2.4所示,积分环节的Nyquist图为虚轴的上半轴,

从原点指向无穷远点(具有恒定的相位超前)。

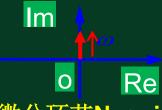


图4.2.4 微分环节Nyquist图

④惯性环节 (一阶积分)

在线开放课程

 $G(s) = \frac{K}{Ts + 1},$ 传函:

频率特性:

$$G(j\omega) = \frac{K}{jT\omega + 1} = \frac{K}{1 + T^2\omega^2} - j\frac{KT\omega}{1 + T^2\omega^2}$$

惯性环节的实频特性为

$$\frac{K}{1+T^2\omega^2}$$

虚频特性为

$$-\frac{KT\omega}{1+T^2\omega^2}$$

$$\frac{KT\omega}{1+T^2\omega^2}$$
,故幅频特性为 $|G(j\omega)| = \frac{K}{\sqrt{1+T^2\omega^2}}$

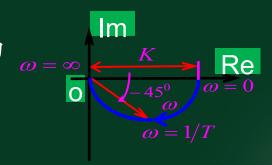
相频特性为

$$\varphi(\omega) = -\arctan T\omega$$
。可对 ω 取特值如下:

ω	0	1/T	\propto
$ G(j\omega) $	K	$K/\sqrt{2}$	0
$\varphi(\omega)$	O_0	-45^{0}	-90^{0}

ω	0	1/T	∞
$ G(j\omega) $	K	$K/\sqrt{2}$	0
$\varphi(\omega)$	O_0	-45^{0}	-90^{0}

ω从 $0\rightarrow \infty$ 时,惯性环节的Nyquist图为 正实轴下的一个半圆,圆心为 (K/2,0)



半径为 K/2 ,如图**4.2.2**所示。

图4.2.2 惯性环节Nyquist图

从图可以看出,惯性环节频率特性的幅值随着频率的增大而减小, 因而具有低通滤波的性能。其相位存在滞后,最大相位滞后为**90°**。

⑤一阶微分环节(导前环节)

多石家莊然道大學

传函:

$$G(s) = Ts + 1$$

$$G(s) = Ts + 1$$
 频率特性: $G(j\omega) = 1 + jT\omega$

在线开放课程

幅频特性为
$$|G(j\omega)| = \sqrt{1 + T^2 \omega^2}$$

,相频特性为

$$\varphi(\omega) = \arctan T\omega$$

可对ω取特值如下:

ω	0	1/ <i>T</i>	∞
$ G(j\omega) $	1	$\sqrt{2}$	\propto
$\varphi(\omega)$	0^0	45 ⁰	90 ⁰

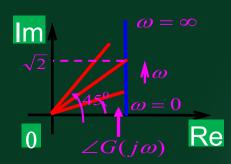


图4.2.3 一阶微分环节Nyquist图

一阶微分环节的Nyquist图始于点(1,j0),平行于虚轴,

是第一象限内的一条垂线,如上图所示。

⑥振荡环节

传函:
$$G(s) = \frac{{\omega_n}^2}{s^2 + 2\xi\omega_n s + {\omega_n}^2}$$
,频率特性: $G(j\omega) = \frac{{\omega^2}_n}{-\omega^2 + j2\xi\omega_n \omega + {\omega^2}_n}$ 在线开放课程

$$G(j\omega) = \frac{\omega^{2}_{n}}{-\omega^{2} + j2\xi\omega_{n}\omega + \omega^{2}_{n}}$$

分子分母同除以 ω^2_n

并令 $\omega/\omega_n = \lambda$ 得:

$$G(j\omega) = \frac{1}{(1-\lambda^2) + j2\xi\lambda} = \frac{1-\lambda^2}{(1-\lambda^2)^2 + 4\xi^2\lambda^2} - j\frac{2\xi\lambda}{(1-\lambda^2)^2 + 4\xi^2\lambda^2}$$

显然,惯性环节的实频特性为
$$\frac{1-\lambda^2}{(1-\lambda^2)^2+4\xi^2\lambda^2}$$
,虚频特性为

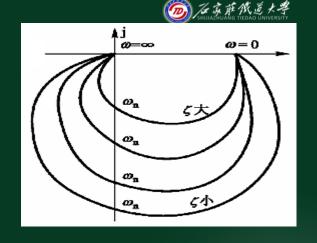
$$\frac{-2\xi\lambda}{(1-\lambda^2)^2+4\xi^2\lambda^2}$$

 $\frac{-2\xi\lambda}{(1-\lambda^2)^2+4\xi^2\lambda^2}$,幅频特性为 $|G(j\omega)| = \frac{1}{\sqrt{(1+\lambda^2)^2+4\xi^2\lambda^2}}$,相频特性为

$$\varphi(\omega) = -\arctan \frac{2\xi\lambda}{1-\lambda^2}$$
 可对 ω 取特值如下:

ω	0	ω_n	∞
λ	0	1	∞
$ G(j\omega) $	1	1/25	0
$\varphi(\omega)$	0	-90^{0}	-180^{0}

ω	0	ω_n	\propto
λ	0	1	∞
$ G(j\omega) $	1	1/25	0
$\varphi(\omega)$	0	-90^{0}	-180^{0}



当ω从0→∞即 λ →∞时,G(ω)的幅值从1→0,相位从0→-1800。

Nyquist图始于点(1, j0), 曲线与虚轴交点的频率为系统的无阻尼

固有频率 $\frac{\omega_n}{\varepsilon}$,此时的幅值为 $\frac{1/2\xi}{\varepsilon}$,曲线在第三、四象限,且

随着 ξ 取值的不同,Nyquist图的形状也不同,如图4.2.7所示。

当 $\frac{\xi < 0.707}{\text{时,幅频特性在}}$ 时,幅频特性在 $G(j\omega)$ 在频率 ω_r 处或频率化

 $\lambda_r = \omega_r/\omega_n$ 出现峰值,可通过 $G(j\omega)$ 对 λ 求导而得),如图**4.2.7**

(b)所示,此峰值称为谐振峰值,频率 ω_r 称为谐振频率。

此时有
$$\lambda_r = \sqrt{1-2\xi^2}$$
 或 $\omega_r = \omega_n \sqrt{1-2\xi^2}$, 幅值为

$$|G(j\omega)| = \frac{1}{2\xi\sqrt{1-2\xi^2}}, \quad \text{All } \stackrel{\frown}{\boxtimes} \varphi(\omega) = -\arctan\frac{\sqrt{1-2\xi^2}}{\xi}, \quad \text{fin } \stackrel{\bot}{\cong} \frac{\xi \ge 0.707}{\xi}$$

时,一般认为谐振频率不再存在。

⑦延时环节

在线开放课程

传函为: $G(s) = e^{-\tau s}$

频率特性为: $G(j\omega) = e^{-j\tau\omega} = \cos \tau\omega - j\sin \tau\omega$

显然,延时环节的实频特性为 $\cos \tau \omega$,虚频特性为

 $-\sin \tau \omega$,幅频特性 $|G(j\omega)|=1$,相频特性为 $\varphi(\omega)=-\tau \omega$,

其Nyquist图为以原点为原心的单位圆。

(2)Nyquist图的一般形状

绘制准确的Nyquist图是比较麻烦的,可借助于计算机进行逐点描绘。一般情况下,可绘制概略的Nyquist曲线,只要求在所研究的点附近有足够的准确性。其绘制的一般步骤如下:

- ①由传递函数求出其实频特性、虚频特性、幅频特性、相频特性的表达式;
- ②求出若干特征点,如起点、终点、与实轴、虚轴的交点等,

并标注在极坐标上。

③补充必要的一些点,并根据特征点的变化趋势及所处的象限,绘出Nyquist图的一般形状。

下面举例说明(P135)

例3 已知系统的传函为

$$G(s) = \frac{K}{s(Ts+1)}$$

,试绘制其Nyqufst图的课程

解:
$$G(j\omega) = \frac{K}{j\omega(1+jT\omega)} = \frac{-KT}{1+T^2\omega^2} - j\frac{K}{\omega(1+T^2\omega^2)}$$

实频特性为

$$-\frac{K}{\omega(1+T^2\omega^2)}$$

幅频特性为

$$\frac{K}{\omega\sqrt{1+T^2\omega^2}}$$

,相频特性为
$$\varphi(\omega) = -90^{\circ} - \arctan T\omega$$

	lm ,	$[G(j\omega)]$
(-KT, j0)	$\omega = \infty$	Re
		0
0		10 68

ω	$u(\omega)$	$v(\omega)$	$A(\omega)$	$\varphi(\omega)$
0	-KT	- ∝	∞	-90^{0}
∞	0	0	0	-180^{0}

例4 已知系统的传函为

在线开放课程

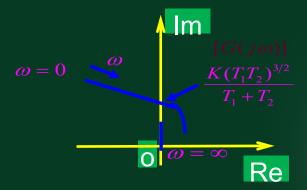
解:

$$G(j\omega) = \frac{K}{(j\omega)^2 (1 + jT_1\omega)(1 + jT_2\omega)}$$

$$A(\omega) = \frac{K}{\omega^2 \sqrt{1 + T_1^2 \omega^2} \sqrt{1 + T_2^2 \omega^2}}$$

$$\varphi(\omega) = -180^{\circ} - \arctan T_1 \omega - \arctan T_2 \omega$$

ω	$A(\omega)$	$\varphi(\omega)$
0	∞	-180^{0}
\propto	0	-360°



思考: 含一个或多个积分环节情况下, 曲线从 哪开始?

例5已知系统传函
$$G(s) = \frac{K(T_1s+1)}{s(T_2s+1)}(T_1 > T_2)$$
,试绘制其Nyquist图。

解:

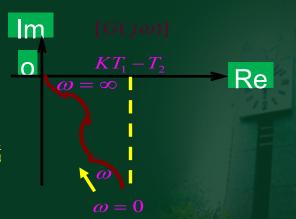
$$G(j\omega) = \frac{K(1+jT_1\omega)}{j\omega(1+jT_2\omega)}$$

$$A(\omega) = \frac{K\sqrt{1 + {T_1}^2 \omega^2}}{\omega \sqrt{1 + {T_2}^2 \omega^2}}$$

$$\varphi(\omega) = -90^{\circ} + \arctan T_1 \omega - \arctan T_2 \omega$$

ω	$A(\omega)$	$\varphi(\omega)$
0	\propto	-90°
∞	0	-90^{0}

思考: 因实频特性大于零, 虚频特性小于零, 曲线 位于第四象限。若此例中 $T_1 < T_2$ 情况如何?



总结如下: 对系统频率特性的一般式

$$G(j\omega) = \frac{K(1+j\tau_1\omega)(1+j\tau_2\omega)...(1+j\tau_m\omega)}{(j\omega)^{\nu}(1+jT_1\omega)(1+jT_2\omega)...(1+jT_{n-\nu}\omega)}, n > m + \text{the production of the production of th$$

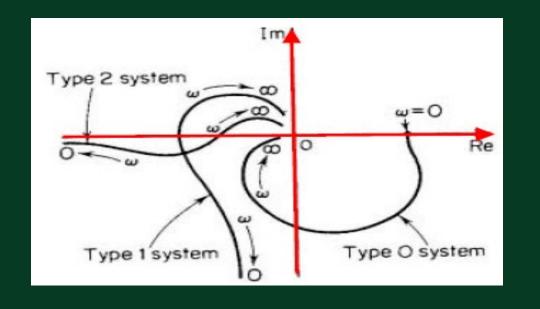
对各型系统的nyquist图的一般形状总结如下:

- (1)当 ω =0时,对0型系统,幅频特性为K,相频特性为0度,nyquist图起始点是一正实轴上的实数点;
- 对 I 型系统,幅频特性为 ∞ ,相频特性为-90度,在低频段,nyquist曲线的渐近线为平行于负虚轴的直线;
- 对**□**型系统,幅频特性为∝,相频特性为-180度,在低频段,频率特性的负实部是比虚部阶数更高的无穷大。
- (2)当ω= ∝时,对0、I、Ⅱ 型系统,幅频特性为零,相频特性为-(n-m)倍的90度。 传递函数含振荡环节时不改变上述结论。

(3)当传递函数含有导前环节时,由于相位的单调下降, nyquist曲线将发生弯曲。

$$G(j0) = \frac{K}{j^{\lambda} \omega^{\lambda}} \bigg|_{\omega \to 0} = \begin{cases} Ke^{j0}, & \lambda = 0 \\ \infty e^{j(-\frac{\pi}{2})}, & \lambda = 1 \\ \infty e^{j(-\pi)}, & \lambda = 2 \end{cases}$$
$$\infty e^{j(-\frac{3\pi}{2})}, & \lambda = 3$$

$$G(j\infty) = \frac{1}{(j\omega)^{n-m}} \Big|_{\omega \to \infty} = \begin{cases} 0e^{j(-\frac{\pi}{2})}, & n-m=1\\ 0e^{j(-\pi)}, & n-m=2\\ 0e^{j(-\frac{3\pi}{2})}, & n-m=3\\ 0e^{j(0)}, & n-m=4 \end{cases}$$



小结

