

在线开放课程

液体与固体介质的电气特性

总结与习题

主讲: 卞建鹏

总结

多/在京产纸道大学 SHIJIAZHUANG TIEDAO UNIVERSITY

在线开放课程

1. 绝缘表征电气参数: 电导率、相对介电常数、

介质损耗角正切、击穿场强

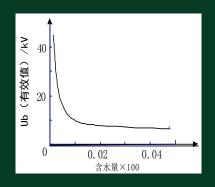
- 2. 液体与固体介质的击穿原理及预防措施
- 3. 组合绝缘介质的配合特性

工频交流和冲击电压下

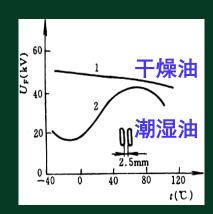
$$\frac{E_1}{E_2} = \frac{C_2}{C_1} = \frac{\varepsilon_2}{\varepsilon_1}$$

一、选择题

多加克萨俄鱼火学


(0505) 1. 下列因素中,不会影响液体电介质击穿电压的

在线开放课程

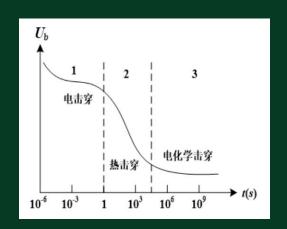

是(A)。

- A. 电压的频率
- C. 电场的均匀程度

- B. 温度
- D. 杂质

含水量

在线开放课程


(0505) 2. 下列哪种电介质存在杂质"小桥"现象(B)。

- A. 气体
- C. 固体

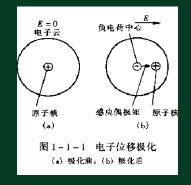
- B. 液体
- D. 无法确定

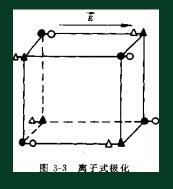
工程用液体——小桥击穿理论

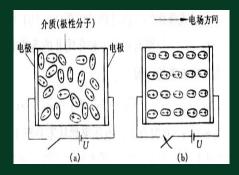
(0502) 3. 极化时间最短的是(A)。

B. 离子式极化

D. 空间电荷极化


A. 电子式极化

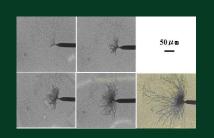

C. 偶极子极化


二、填空题

(0502) 1. 电介质极化的基本形式主要有 电子式极化、离

子式极化、偶极子式极化。

在线开放课程


(0501) 2. 相对介电常数 是表征电介质在电场作用下极化 在线开放课程程度的物理量。

(0503) 3. 固体电介质电导包括 表面 电导和 体积 电导。

(0507) 4. 变压器内部固体绝缘的老化形式有: 电老化和

热老化。

电老化——局部放电

热老化——8度规则

对A级绝缘介质,如果温度超过规定值的8度,寿命缩短一半。

三、判断题

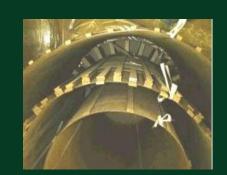
(0502) 1. 无论何种结构的电介质,在没有外电场作用时,其内部各个分子偶极矩的矢量和平均来说为零,因此电介质整体上对外没有极性。(√)

(0502) 2. 在四种电介质的基本极化形式中,只有电子式极化没有能量损耗。(×)

(0503) 3. 电介质的电导率随温度的升高而升高。(√)

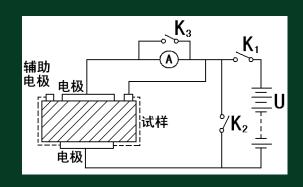
四、简答题

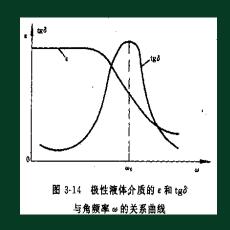
多加克菲族意大学


在线开放课程

(0501) 1. 什么是电介质?它的作用是什么?

电介质是指通常条件下导电性能极差的物质,云母、变压器油等都是电介质。电介质中正负电荷束缚得很紧,内部可自由移动的电荷极少,因此导电性能差。作用是将电位不同的导体分隔开来,以保持不同的电位并阻止电流向不需要的地方流动。



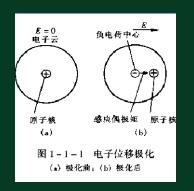


(0504) 2. 测量绝缘材料的<mark>泄漏电流</mark>为什么用直流电压 而不用交流电压?

因为直流电压作用下的介质损失仅有漏导损失,而<mark>交流</mark>作用下的介质损失不仅有漏导损失还有极化损失。所以在 直流电压下,更容易测量出泄漏电流。

(0501) 3. 什么叫电介质的极化?

多并成道大學


在线开放课程

在外电场的作用下,电介质的正、负电荷将沿电场方向

作有限的位移或转向,形成电矩。

(0502) 4. 极化形式分为哪三种?

电子式极化、离子式极化、偶极子极化。

在线开放课程

- (0505) 5. 提高液体介质击穿电压的措施有哪些?
- (1)减小杂质,包括过滤、防潮、脱气。
- (2) 改进绝缘设计,包括采用覆盖层、改进电极形状、使用绝缘层、加屏障。

