

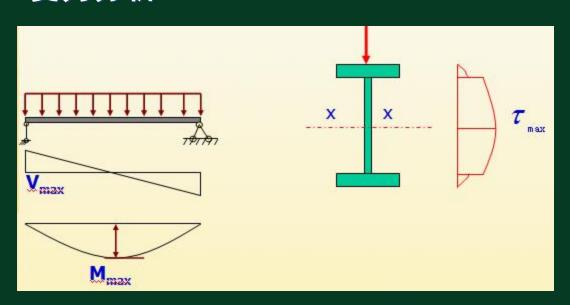
钢结构设计原理

梁

梁的抗剪强度和局部承压强度

主讲:高伟

目录


在线开放课程

- 一、梁的抗剪强度计算
- 二、梁的局部承压强度计算

• 一、梁的抗剪强度计算

1. 受力分析

2. 对工字形截面的梁, 其计算公式为:

$$\tau_{\max} = \frac{V \cdot S}{I \cdot t_{\mathrm{w}}}$$

式中

V——计算截面沿腹板平面作用的剪力;

S——计算剪应力处以上(或下)毛截面对中和轴的面积矩;

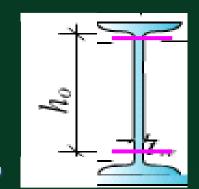
I——毛截面惯性矩;

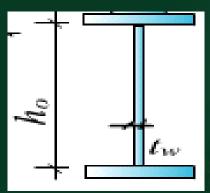
tw——腹板厚度。

3. 极限状态:实腹梁截面上的最大剪应力达钢材的抗剪屈服点。

$$\tau_{\max} \leq f_{\nu}$$

注意:

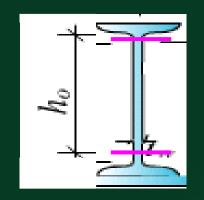

- (1) S、I计算时,采用毛截面
- (2) 当梁的抗剪强度不足时,最有效的办法 是增大腹板的面积,但腹板高度h₀一般由梁的刚 度条件和构造要求确定,故设计时常采用加大腹 板厚度t_w的办法来增大梁的抗剪强度。
 - (3) 对于型钢梁来说,由于腹板较厚,该式均能满足,故不必计算。

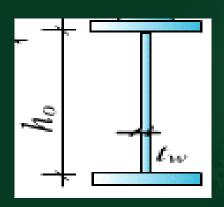


- 二、梁的局部承压强度
 - 1. 定义: 局部受压产生的压应力。
 - 2. 计算局部压应力的几种情况:

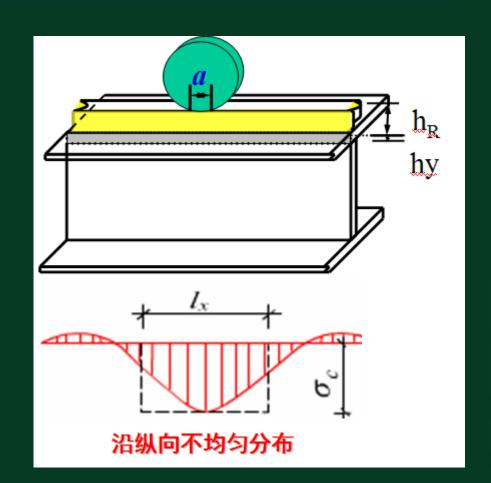
梁在承受固定集中荷载处无加劲肋,或承受移动集中荷载作用

3. **计算点:** 应计算腹板计算高度 h。边缘处的局部压应力

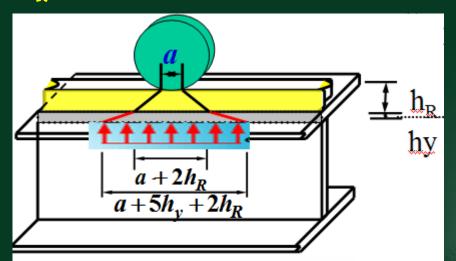




腹板的计算高度h₀.


- ▶对于型钢梁为腹板与翼缘相接 处两内圆弧起点间的距离,
- ▶对于组合梁则为腹板高度。

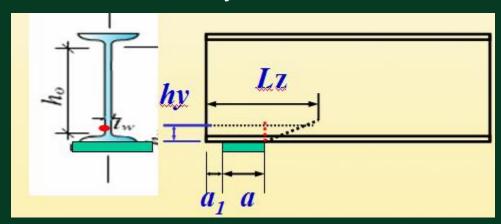
4. 应力分布



5. 关于分布长度的取值

假定力F按1:1和1: 2.5扩

散且均匀分布.


$$l_Z = a + 5h_y + 2h_R$$

6. 梁端支座反力:

$$l_z = a + 2.5h_y + a_1$$

7. 计算公式 $\sigma_{\rm c} = \frac{\psi r}{t_{\rm w} l_{\rm z}} \le f$

/, 一集中荷载在腹板计算高度边缘的假定分布长度:

跨中集中荷载: $l_z = a + 5h_v + 2h_R$

梁端支座反力: $l_z = a + 2.5h_v + a_y$

a─集中荷载沿梁跨度方向的支承长度,对吊车轮压可取为50mm;

 h_{v} —自梁承载边缘到腹板计算高度边缘的距离;

 h_R —轨道的高度,计算处无轨道时取0;

a₁ --梁端到支座板外边缘的距离,按实际取,但

不得大于2.5h_v。

8. 若不满足要求:

固定集中荷载: 设置支承加劲肋

移动集中荷载: 增大腹板厚度

三、折算应力

$$\sqrt{\sigma^2 + \sigma_c^2 - \sigma_c^2 + 3\tau^2} \le \beta_1 f$$

其中:
$$\sigma = \frac{M \cdot y}{I_{\text{nx}}}$$

 σ , σ 。应带各自符号,拉为正。

 eta_1 — 计算折算应力的设计值增大系数。

 σ , σ _c 异号时, β ₁=1.2;

 σ , σ _c 同号时或 σ _c = 0, β ₁ = 1.1

原因: 1. 只有局部某点达到塑性,几种应力都以较大值出现的概率较小。

2. 异号力场有利于塑性发展——提高设计强度

小结:

- 1. 梁的抗剪强度计算
- 2. 梁的局部承压强度计算
- 3. 梁的折算应力计算