

表上作业法是单纯形法在求解运输问题 时的一种简化方法,其实质是单纯形法。但具 体计算和术语有所不同。

使用表上作业法必须满足平衡关系和 MIN优化方向。计算步骤可归纳为:

(1) 找出初始基可行解。即在(m×n)产销平衡表上用西北角法或最小元素法, Vogel法给出m+n-1个数字, 称为数字格。它们就是初始基变量的取值。

- (2) 求各非基变量的检验数,即在表上计算空格的检验数,判别是否达到最优解。如已是最优解,则停止计算,否则转到下一步。方法有闭回路法和位势法。
- (3) 确定换入变量和换出变量,找出新的基可行解。在表上用<mark>闭回路法</mark>调整。
- (4) 重复(2), (3)直到得到最优解为止。

这与一般线性规划问题不同。 产销平衡的运输问题总是存在可行解。因有

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j = d$$

必存在x_{ii}≥0, i=1, ···, m, j=1, ···, n 这就是可行解。又因

0≤x_{ij}≤min(a_j, b_j) 故运输问题**必存在最优解**。

确定初始基可行解的方法很多,有西北角法 ,最小元素法和伏格尔(Vogel)法。一般希 望的方法是既简便,又尽可能接近最优解。

(1) 西北角法:从西北角(左上角)格开始,在格内的右下角标上允许取得的最大数。然后按行(列)标下一格的数。若某行(列)的产量(销量)已满足,则把该行(列)的其他格划去。如此进行下去,直至得到一个基本可行解。

1、确定初始基本可行解:

(1) 西北角法

	B_1	B_2	B_3	B_4	产量ai
A_1	3	11	3	10	7
	3	4			
A_2	1	9	2	8	4
		2	2		
A_3	7	4	10	5	9
			3	6	
销量 b _j	3	6	5	6	20

(2) 最小元素法:

方法的基本思想是<mark>就近供应</mark>,即从单位 运价表中最小的运价开始确定供销关系,然 后次小。一直到给出初始基可行解为止。

♥ 表上作业法

(2) 最小元素法: 从运价最小的格开始, 在格内的右下角标上允许取得的最大数。然 后按运价从小到大顺序填数。若某行(列) 的产量(销量)已满足,则把该行(列)的 其他格划去。如此进行下去,直至得到一个 基本可行解。

运价表划掉规则:当剩余产大于销,划去该元素所在列。当剩余产小于销,划去该元素所在行。

(2) 最小元素法

	B_1	B_2	B_3	B_4	产量 a _i
A_1	3	11	3	10	7
			4	3	
A_2	1	9	2	8	4
	3		1		
A_3	7	4	10	5	9
		6		3	
销量 b _j	3	6	5	6	20

♥(3) 伏格尔法

最小元素法的缺点是:为了节省一处的 费用,有时造成在其他处要多花几倍的运费。 伏格尔法考虑到,一产地的产品假如不能按 最小运费就近供应,就考虑次小运费,这就 有一个差额。差额越大,说明不能按最小运 费调运时, 运费增加越多。因而对差额最大 处,就应当采用最小运费调运。也叫做"大 差额小运价法"。

• 伏格尔法

伏格尔法的步骤是:

第一步:在表4-3中分别计算出各行和各列的最小运费和次最小运费的差额,并填入该表的最右列和最下行,见表4-7。

销地	В	B_2	B_{8}	B_{1}	行蓋额
加丁					
$A_{\mathbf{l}}$	3	11	3	10	0
$A_{\!\scriptscriptstyle 2}$	1	9	2	8	1
$A_{\!\scriptscriptstyle 3}$	7	4	10	5	1
列達额	2	5	1	3	

⊙伏格尔法

第二步: 从行或列差额中选出最大者,选择它所在行或列中的最小元素。在表4-7中 B_2 列是最大差额所在列。 B_2 列中最小元素为4,可确定 A_3 的产品先供应 B_2 的需要。得表4-8

销地	B_{l}	B ₂	B_3	B_4	产
加厂					量
A_1					7
A_{2}					4
A_3		6			9
销量	3	6	5	6	

◎ 伏格尔法

同时将运价表中的B₂列数字划去。如表4-9所示。

销地	B_1	B !	B_3	B_4	行差额
加工厂					
A_1	3	1	3	10	0
\mathbb{A}_2	1	9	2	8	1
A_3	7	4	10	5	2
列差额	2		1	3	

• 伏格尔法

第三步:对表3-12中未划去的元素再分别计算出各行、各列的最小运费和次最小运费的差额,并填入该表的最右列和最下行。重复第一、二步。直到给出初始解为止。用此法给出例1的初始解列于表4-10。

销地	B_1	B_2	B_3	B_4	产
加工厂					量
A_1			5	2	7
A_2	3			1	4
A_3		6		3	9
销量	3	6	5	6	

• 伏格尔法

由以上可见: 伏格尔法同最小元素法除 在确定供求关系的原则上不同外, 其余步骤 相同。伏格尔法给出的初始解比用最小元素 法给出的初始解更接近最优解。

本例用伏格尔法给出的初始解就是最优解。

♥ 表上作业法

注:应用最小元素法时,每次填完数,都只划去运价表的一行或一列,只有最后一个元素例外(同时划去一行和一列)。当填上一个数后行、列同时饱和时,也应任意划去一行(列),在保留的列(行)中没被划去的格内标一个0。

