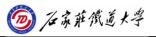


铁路轨道

轨道结构

钢轨

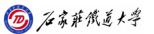

主讲: 马超

目录

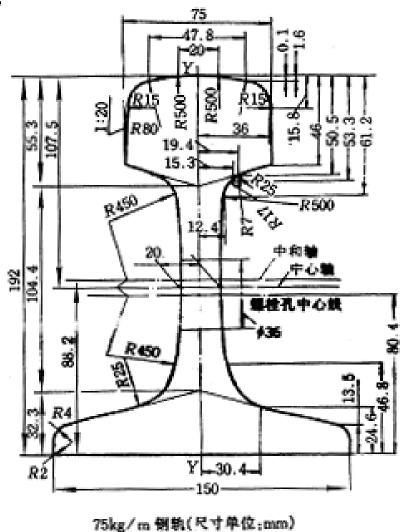
- 钢轨的功用、性能和断面
- 钢轨类型
- 钢轨轨缝及设置
- 钢轨材质
- 钢轨主要的伤损形式

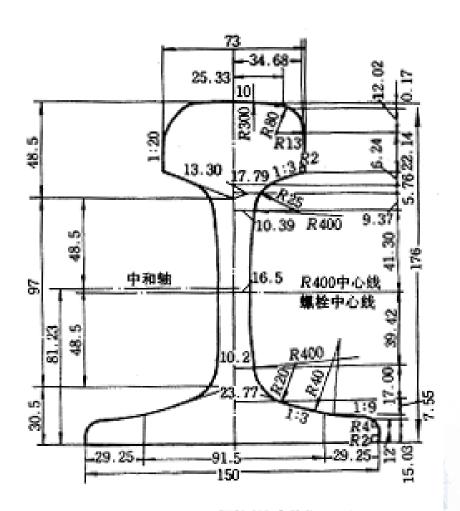
钢轨

钢轨的功用、性能和断面

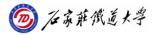

• 功用:承力、传力、导向、导电。

钢轨类型


• 根据取整后的每米钢轨重量(kg/m):


75, 60, 50, 43, 38kg/m_o

- 根据长度(m):
- ➤ 标准长度: 12.5 、25、50、100m。
 - > 标准缩短轨
 - > 短轨



钢轨类型

60'sg/m 钢轨(尺寸单位:mm)

钢轨轨缝及设置

- 预留轨缝: 铺轨施工时预留的轨缝。

•构造轨缝:受钢轨、接头夹板及螺栓尺寸限制,在构造上能实现的轨端最大缝隙值。

预留轨缝的计算(普通线路)

$$a_0 = \alpha L(t_z - t_0) + \frac{1}{2} a_g$$
 α 钢轨线膨胀系数(0.0118mm/m.°C);

 t_z 当地的中间轨温;

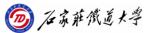
 t_0 调整轨缝时的轨温;

 δ_g 钢轨的构造轨缝(18mm),

L 钢轨长度;

预留轨缝设置应满足的条件

• 冬天螺栓不受剪, 夏天轨缝不顶严

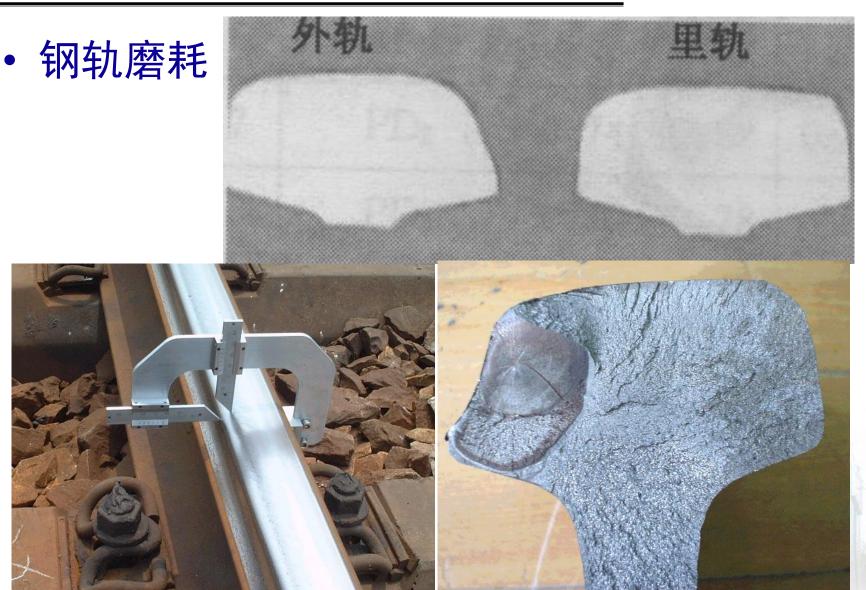

允许铺轨年轨温差
$$[\Delta T] = \frac{a_g + 2C}{\alpha L}$$
 (°C)

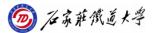
C一一接头阻力和基础阻力限制钢轨伸缩量

允许铺轨轨温上限
$$[t_{os}] = t_z + \frac{a_g}{2\alpha L}$$

允许铺轨轨温下限
$$[t_{ox}] = t_z - \frac{a_g}{2\alpha L}$$

60kg/m轨,(*Tz*−30°C)~(*Tz*+30°C)




钢轨材质

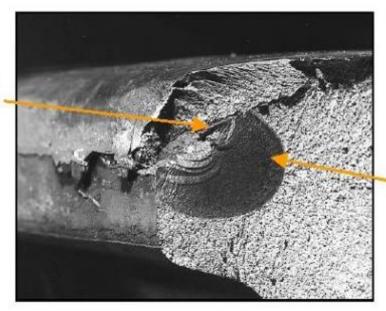
• Fe、C、Mn、Si、P、S等元素。

序号	钢号	化学成份(%)						抗拉强度	延伸率
		С	Si	Mn	Cu	Р	S	N/mm ²	%
1	U ₇₁	0.64~0.77	0.13~0.28	0.60~0.90		≤0.04	≤0.05	785	10
2	U ₇₄	0.67~0.80	0.13~0.28	0.70~1.10		≤0.04	≤0.05	785	9
3	U ₇₁ Cu	0.65~0.77	0.15~0.30	0.70~1.10	0.01~0.04	≤0.04	≤0.05	785	9
4	U ₇₁ Mn	0.65~0.77	0.15~0.35	1.10~1.50		≤0.04	≤0.04	883	8
5	U _{71M} nSi	0.65~0.75	0.85~1.15	0.85~1.15		≤0.04	≤0.04	883	8
6	U ₇₁ MnSi Cu	0.65~0.77	0.70~1.10	0.80~1.20	0.01~0.04	≤0.04	≤0.04	883	8
7	PD ₂	0.74~0.82	0.15~0.35	0.70~1.00		≤0.04	≤0.04	1175	11
8	PD_3	0.70~0.78	0.50~0.70	0.75~1.05	0.04~0.08	≤0.035	≤0.035	980	10
9	BNbRE	0.70~0.82	0.06~0.09	0.90~1.30		≤0.04	≤0.04	980	8

钢轨主要的伤损形式

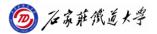
钢轨主要的伤损形式

• 波浪形磨耗 (波浪压溃)



钢轨主要的伤损形式

• 轨头核伤



水平纵 向裂缝

垂向核 伤裂缝

小结

- 钢轨的功用、性能和断面
- 钢轨类型
- 钢轨轨缝及设置
- 钢轨材质
- 钢轨主要的伤损形式

